Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401180, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618946

RESUMO

Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for "beyond von Neumann" computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii-Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect.

2.
Nat Commun ; 11(1): 3536, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669654

RESUMO

Magnetic skyrmions are topological magnetic spin structures exhibiting particle-like behaviour. They are of strong interest from a fundamental viewpoint and for application, where they have potential to act as information carriers in future low-power computing technologies. Importantly, skyrmions have high physical stability because of topological protection. However, they have potential to deform according to their local energy environment. Here we demonstrate that, in regions of high exchange energy density, skyrmions may exhibit such extreme deformation that spontaneous merging with nearest neighbours or spawning new skyrmions is favoured to attain a lower energy state. Using transmission electron microscopy and a high-speed imaging detector, we observe dynamics involving distinct configurational states, in which transitions are accompanied by spontaneous creation or annihilation of skyrmions. These observations raise important questions regarding the limits of skyrmion stability and topological charge conservation, while also suggesting a means of control of skyrmion creation and annihilation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...